Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cephalalgia ; 42(10): 1039-1049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35615806

RESUMO

BACKGROUND: Converging evidence suggests that anatomical and functional mesocorticolimbic abnormalities support the chronicization of pain disorders. METHODS: We mapped structural and functional alterations of the mesocorticolimbic system in a sample of chronic cluster headache patients (n = 28) in comparison to age and sex-matched healthy individuals (n = 28) employing structural MRI and resting-state functional MRI. RESULTS: Univariate logistic regression models showed that several of the examined structures/areas (i.e., the bilateral nucleus accumbens, ventral diencephalon, hippocampus, and frontal pole, and the right amygdala) differentiated chronic cluster headache patients from healthy individuals (p < 0.05, uncorrected). Specifically, all the significant structures/areas had increased volumes in chronic cluster headache patients compared to healthy individuals. The examination of the groups suffering from left and right-sided cranial attacks showed a lateralization effect: ipsilateral to the pain ventral diencephalic regions and contralateral to the pain nucleus accumbens discriminated chronic cluster headache patients from healthy individuals. The resting-state functional MRI data analyses showed that chronic cluster headache patients compared to CTRL individuals present robust reduced functional connectivity in the right frontal pole-right amygdala pathway (p < 0.05, FDR-corrected). CONCLUSION: Our results showed that chronic cluster headache patients present anatomical and functional maladaptation of the mesocorticolimbic system, with functional data indicating a possible prefrontal areas' failure to modulate the mesolimbic structures. These results were opposite to what we hypothesized based on the previous literature on chronic pain conditions.Future studies should assess whether the observed mesocorticolimbic abnormalities are due to the neuroprotective effects of the assumed medications, or to the frequent comorbidity of CH with neuropsychiatric disorders or if they are a genuine neural signature of CH and/or chronic cluster headache condition.


Assuntos
Cefaleia Histamínica , Transtornos da Cefaleia , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo , Cefaleia Histamínica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Dor
2.
Brain Sci ; 12(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35326311

RESUMO

Resting-state fMRI (rs-fMRI) is a widely used technique to investigate the residual brain functions of patients with Disorders of Consciousness (DoC). Nonetheless, it is unclear how the networks that are more associated with primary functions, such as the sensory-motor, medial/lateral visual and auditory networks, contribute to clinical assessment. In this study, we examined the rs-fMRI lower-order networks alongside their structural MRI data to clarify the corresponding association with clinical assessment. We studied 109 chronic patients with DoC and emerged from DoC with structural MRI and rs-fMRI: 65 in vegetative state/unresponsive wakefulness state (VS/UWS), 34 in minimally conscious state (MCS) and 10 with severe disability. rs-fMRI data were analyzed with independent component analyses and seed-based analyses, in relation to structural MRI and clinical data. The results showed that VS/UWS had fewer networks than MCS patients and the rs-fMRI activity in each network was decreased. Visual networks were correlated to the clinical status, and in cases where no clinical response occurred, rs-fMRI indicated distinctive networks conveying information in a similar way to other techniques. The information provided by single networks was limited, whereas the four networks together yielded better classification results, particularly when the model included rs-fMRI and structural MRI data (AUC = 0.80). Both quantitative and qualitative rs-fMRI analyses yielded converging results; vascular etiology might confound the results, and disease duration generally reduced the number of networks observed. The lower-order rs-fMRI networks could be used clinically to support and corroborate visual function assessments in DoC.

3.
Cephalalgia ; 42(6): 444-454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875879

RESUMO

PURPOSE: Previous studies on brain morphological alterations in chronic cluster headache revealed inconsistent findings. METHOD: The present cross-sectional explorative study determined telencephalic and cerebellar cortex thickness alterations in a relatively wide sample of chronic cluster headache patients (n = 28) comparing them to matched healthy individuals. RESULTS: The combination of two highly robust state-of-the-art approaches for thickness estimation (Freesurfer, CERES), strengthened by functional characterization of the identified abnormal regions, revealed four main results: chronic cluster headache patients show 1) cortical thinning in the right middle cingulate cortex, left posterior insula, and anterior cerebellar lobe, regions involved in nociception's sensory and sensory-motor aspects and possibly in autonomic functions; 2) cortical thinning in the left anterior superior temporal sulcus and the left collateral/lingual sulcus, suggesting neuroplastic maladaptation in areas possibly involved in social cognition, which may promote psychiatric comorbidity; 3) abnormal functional connectivity among some of these identified telencephalic areas; 4) the identified telencephalic areas of cortical thinning present robust interaction, as indicated by the functional connectivity results, with the left posterior insula possibly playing a pivotal role. CONCLUSION: The reported results constitute a coherent and robust picture of the chronic cluster headache brain. Our study paves the way for hypothesis-driven studies that might impact our understanding of the pathophysiology of this condition.


Assuntos
Cefaleia Histamínica , Córtex Cerebelar , Afinamento Cortical Cerebral , Cefaleia Histamínica/diagnóstico por imagem , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos
4.
Front Neurol ; 12: 786734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095731

RESUMO

Magnetic Resonance-guided high-intensity Focused Ultrasound (MRgFUS) of the thalamic ventral intermediate nucleus (Vim) for tremor has increasingly gained interest as a new non-invasive alternative to standard neurosurgery. Resting state functional connectivity (rs-FC) correlates of MRgFUS have not been extensively investigated yet. A region of interest (ROI)-to-ROI rs-FC MRI "connectomic" analysis focusing on brain regions relevant for tremor was conducted on 15 tremor-dominant patients with Parkinson's disease who underwent MRgFUS. We tested whether rs-FC between tremor-related areas was modulated by MRgFUS at 1 and 3 months post-operatively, and whether such changes correlated with individual clinical outcomes assessed by the MDS-UPDRS-III sub items for tremor. Significant increase in FC was detected within bilateral primary motor (M1) cortices, as well as between bilateral M1 and crossed primary somatosensory cortices, and also between pallidum and the dentate nucleus of the untreated hemisphere. Correlation between disease duration and FC increase at 3 months was found between the putamen of both cerebral hemispheres and the Lobe VI of both cerebellar hemispheres, as well as between the Lobe VI of untreated cerebellar hemisphere with bilateral supplementary motor area (SMA). Drop-points value of MDS-UPDRS at 3 months correlated with post-treatment decrease in FC, between the anterior cingulate cortex and bilateral SMA, as well as between the Lobe VI of treated cerebellar hemisphere and the interpositus nucleus of untreated cerebellum. Tremor improvement at 3 months, expressed as percentage of intra-subject MDS-UPDRS changes, correlated with FC decrease between bilateral occipital fusiform gyrus and crossed Lobe VI and Vermis VI. Good responders (≥50% of baseline tremor improvement) showed reduced FC between bilateral SMA, between the interpositus nucleus of untreated cerebellum and the Lobe VI of treated cerebellum, as well as between the untreated SMA and the contralateral putamen. Good responders were characterized at baseline by crossed hypoconnectivity between bilateral putamen and M1, as well as between the putamen of the treated hemisphere and the contralateral SMA. We conclude that MRgFUS can effectively modulate brain FC within the tremor network. Such changes are associated with clinical outcome. The shifting mode of integration among the constituents of this network is, therefore, susceptible to external redirection despite the chronic nature of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...